
Software vulnerability disclosure and security
investment

Arrah-Marie Jo∗

May 2019
Preliminary draft

Abstract

Around the debate on software vulnerability disclosure, existent works have mostly
explored how disclosure gives an incentive to software vendors to better secure their
software. The role of third parties such as business users, security firms, downstream
software vendors or service providers is rarely taken account, while in fact these
actors are increasingly involved in improving the security of a software.

In this paper, we examine how the public disclosure of a critical vulnerability
impacts not only the software vendor’s behavior but most of all that of other third
parties. Using data from 2009 to 2018 on vulnerabilities disclosed on SecurityFocus
BugTraq, we compare how the contribution of each type of actors in finding new se-
curity flaws evolves for the software affected by a critical vulnerability announcement
and for the others. We find that the overall number of discovered vulnerabilities
increases after a highly publicized vulnerability announcement. In particular, third
parties’ contribution – more specifically, all actors other than the software vendor and
its competitors – are more positively affected by the announcement than the software
vendors’ contribution. Our findings bring into focus the need to take account the
contribution of third party actors when analyzing the incentives in providing software
security.

Keywords: information security economics, software vulnerability disclosure, vul-
nerability discovery, security investment

∗Télécom ParisTech (Institut Polytechnique de Paris). E-mail: arrahmarie.jo(a)gmail.com

1

1 Introduction

In January 2018, Intel revealed that millions of their computer processors were exposed

to a critical vulnerability named Spectre and Meltdown.1 Instead of going public right

after its discovery, Intel had exclusively informed some of its main customers and kept

the information confidential for more than half a year.2 The secrecy kept by Intel can be

explained by the increasing security risk it would have been exposed to if the vulnerability

information became public before they find a solution to secure the flaw (Schneier, 2000).

However, it also prevented other firms and users to timely assess their own risk and to

react.

In line with Intel’s defense, the public disclosure of a vulnerability can be harmful

to a system’s security because it increases the probability that the disclosed information

is exploited by a malevolent actor. Empirical estimates support this idea, showing how

the frequency of attacks increases when the vulnerability is disclosed to public (Arora,

Nandkumar, and Telang, 2006). On the other side, a greater number of studies, both

theoretical and empirical, find that vulnerability disclosure encourages software vendors to

deliver patches more quickly and to provide a better software quality over time (Nizovtsev

and Thursby, 2007; Cavusoglu, Cavusoglu, and Raghunathan, 2007; Arora, Telang, and

Xu, 2008; Arora, Krishnan, Telang, and Yang, 2010). All these papers key on the fact that

the disclosure of a vulnerability allows the attackers to specifically exploit the disclosed

information and how in turn it affects the users and the software vendors’ behavior.

Besides, the public disclosure of a vulnerability may also have some effect that is not

directly related to the disclosed vulnerability. For instance, Telang and Wattal (2007)

show that vulnerability announcements lead to a significant loss in the affected software

vendor’s market value. In the same vein, we consider that vulnerability disclosure may act

as a signal that the actual security quality of the software may be lower than what it was

perceived until now. In our case, we study whether the disclosure of a vulnerability on

a software gives an incentive to improve its security. We are not only interested in the
1https://meltdownattack.com
2https://www.wsj.com/articles/intel-warned-chinese-companies-of-chip-flaws-before-u-s-government

1

https://meltdownattack.com
https://www.wsj.com/articles/intel-warned-chinese-companies-of-chip-flaws-before-u-s-government-1517157430

software vendor’s behavior but also of other third party actors that actively contribute to

software security, like the (business) users, competitors, security firms, public organizations

or individual contributors.

The existent literature considers that users are passive agents which undertake damage

control activities (patch installations, work-arounds) rather than actively engage in pre-

ventive actions. A dearth of research exists on the role that users can play in improving

software security, yet a considerable part of users, especially business users – i.e. companies

that use the software, including downstream and upstream software vendors and service

providers –, contribute actively and significantly to global cybersecurity. They often

manage their own security research and incident response team, pay security firms to

secure their systems, collaborate with public CERTs and academic researchers, crowdsource

individuals through vulnerability reward programs. In fact, businesses with large scale

information systems necessarily have “a lot at stake”, hence they have not only the ability

but also the incentives to actively find and fix software vulnerabilities. It could be even

more the case as the larger a business is – i.e. the larger and complex its information

system is –, the less flexible it is in switching from one software to another even though it

realizes that the software it uses has a poor security quality. In other words, companies

who have big switching cost may prefer to actively collaborate with other actors (the

software vendor, security firms, individual security experts, public organizations...) to

improve the security of the software rather than waiting for the vendor to provide a better

security.

In this paper, we aim at assessing the impact of a vulnerability disclosure on the

behavior of each actors that might exert an effort to improve the security of the software

affected by the disclosure. We consider the number of vulnerabilities that are discovered

by a given actor as a measure of the effort it exerts, i.e. its security investment level.

Specifically, we examine how the public disclosure of a vulnerability with a heavy

media coverage affects the discovery of new vulnerabilities in the software that suffer

the disclosure. For that, we study the case of three markets – by market we designate a

group of software that belongs to the same type and which present strong substitutability

2

– at the heart of Internet security and which are well-known to standard users and thus

generates significant media attention from general media as well as from the security

community – namely the web browser market, the desktop operation system and the

mobile operation system markets. For each market, we identify a vulnerability that has

received a particularly large media coverage and has generated a peak in web search

volumes. Then, using data collected from a public vulnerability database on software

vulnerabilities – SecurityFocus BugTraq – reported from January 2009 to December 2018,

we examine the impact of the disclosure event on the number of vulnerabilities reported

by each type of actors over time. We use a difference-in-difference specification in order to

measure the change in the level of effort exerted to the software affected by the disclosure

compared to other software.

We find that after the disclosure of a critical vulnerability, the vulnerability research

activity on the affected software significantly increases compared to other software. In-

terestingly, actors that are more affected by the disclosure are rather third parties than

the software vendor itself. In particular, the number of vulnerabilities discovered by

users (including downstream or upstream software vendors), security firms and individual

researchers increases, while the effect on competing software vendors is not significant. This

result is all the more important as our analysis shows that third party actors contribute

more than the software vendor to the discovery of new security flaws in general. Our

findings suggest that one should not ignore the incentives and potential contribution of

third party actors when studying software security.

This paper is structured as follows. In the next section, we review the relevant

literature. Section 3 presents the identification strategy and the data. This section

comprises 5 subsections: in Subsection 3.1, we explain how we categorize the different

actors that contribute to the security of a software, we present the econometric specification

in Subsection 3.2, detail how we build the dependent and the treatment variables in

Subsections 3.3 and 3.4. Subsection 3.5 verify the parallel trend assumption and presents

some descriptive statistics. We then present the estimation results in Section 4 and Section

5 concludes.

3

2 Literature Review

Our paper draw from three literature streams within the economics of information security.

First, it participates to the debate on whether promoting software vulnerability disclo-

sure is socially preferable. Cavusoglu et al. (2007) and Arora et al. (2008) both develop a

theoretical model to identify the optimal timing for vulnerability disclosure, considering

the damage cost to users and the patch development cost for the software vendor as societal

losses. In both papers, users’ and attackers’ behavior is exogenously fixed, and they focus

on the decisions of the social planner and the software vendor. Their main finding is that,

when vendors do not sufficiently internalize user losses, vulnerability disclosure provides an

incentive for vendors to secure their product more quickly. Nizovtsev and Thursby (2007)

also study the same question and find that vulnerability disclosure has a positive effect on

software vendors’ responsiveness. Besides, one of the models in Nizovtsev and Thursby

(2007) considers the case of open source software where users can actively participate

in finding and fixing vulnerabilities. They show that the positive effect of vulnerability

disclosure becomes greater when users are able to fix a software by themselves. This idea

is in line with the question we study in our paper, since we look at how users’ participation

in improving security evolves after the disclosure of a critical vulnerability.

In parallel to analytical models, some empirical studies have examined the impact of

vulnerability disclosure on the attack frequencies (Arora et al., 2006), on software vendors’

market value (Telang and Wattal, 2007), and on software vendors’ patch release behavior

(Arora et al., 2010). In our paper, we study the impact of the disclosure on the behavior

of all actors that actively participate in improving the security of a software, including

the users. Our paper also differs from existent empirical works as we are not studying the

effect of a vulnerability disclosure that is directly associated to the disclosed information

but we rather consider vulnerability disclosure as a signal that updates the perceived

security quality of the affected software.

Secondly, our work is related to papers that analyze the consequences of security

interdependence. In particular, several papers account for the externality caused between

users due to the interdependence of security (Kannan and Telang, 2005; Arora et al.,

4

2008; Choi, Fershtman, and Gandal, 2010). Overall, results suggest that an inequality in

users' ability to secure their system or software reduces the social bene�ts of vulnerability

disclosure.

Lastly, a stream of research in the economics of informations security studies software

liability and risk sharing mechanisms between users and software vendors. Kim, Chen,

and Mukhopadhyay (2009) investigate how risk sharing of security losses between software

vendors and users improves software quality. August and Tunca (2006, 2011) analyze

the impact of di�erent liability policies to users or/and the software vendor given the

security risk and the patching cost. Cavusoglu, Cavusoglu, and Zhang (2008) consider the

coordination possibilities between users and vendors in managing security patches. Lam

(2016) develops a model where the software vendor can undertake multiple types of security

investments and show that giving full liability to the vendor makes him underinvest in

attack prevention and over-invest in damage control. It is worth noting that all of these

works are analytical. Regarding the coordination issue between the software provider and

users, we consider a situation where both the vendor and other third party stakeholders

can undertake actions to improve the software security. We particularly focus on the

�proactive� role that these third parties can play by actively �nding and �xing security

�aws in collaboration with the vendor.3

3 Data and Empirical Strategy

Our goal is to examine how a critical vulnerability disclosure on a software a�ects the

security investment on it. For that, we consider the e�ort provided by an actor to �nd new

security �aws as a measure of the e�ort it exerts to improve the security of the software.

We study three markets, which attract signi�cant media attention from end users and thus

for which we are able to identify a vulnerability disclosure that raised a particular media

coverage compared to others: the web browser market, the mobile OS and the desktop OS

markets.
3Contrary to Lam (2016) that includes vulnerability research and patch development activities in

damage control investment and remediation, we consider them as attack-prevention strategies as it reduces
the probability of (zero-day) attacks.

5

In order to study the causal relationship between a vulnerability disclosure and the

security investment behavior of each actors that contributes actively to the security of the

software, we use a di�erence-in-di�erence speci�cation. That is, we compare the di�erence

in the number of vulnerabilities reported by each actors, before and after the extensive

media coverage of a security �aw on the targeted software (the treatment group) and the

others (the control group).

The main data set we use comes from Security Focus bugtraq, which is a public

database on software vulnerabilities. The treatment is identi�ed using Google Trends

data. More precisely, we identify a particular vulnerability disclosure that have generated

a spike in media coverage compared to all other vulnerability disclosures in a market (i.e.

either on web browsers, on mobile OS or on desktop OS). We then examine how this event

a�ects the number of vulnerabilities that are discovered for each software belonging to the

market. Each markets are analyzed separately.4

In the next subsection (Subsection 3.1), we explain how we categorize the di�erent actors

contributing to the security of a software. Then we detail the econometric speci�cation

in Subsection 3.2. Subsection 3.3 describes how we build our dependent variable for the

three di�erent speci�cations we use. Then follows 3.4 where we discuss the identi�cation

of our treatment variable. Lastly, we verify the parallel trend assumption and detail the

descriptive statistics in Subsection 3.5.

3.1 Categorization of the actors

Who should invest in security and how to encourage the right actor in the right way is

a question at the heart of information security economics. To answer to this question,

economists generally focus on the interaction between the software vendor, users, and

attackers. However in practice, various other actors come into play. For instance, a

company's information system is formed by multiple software; these software use various

frameworks and libraries created and maintained by external organizations, they use

components, modules and extensions provided by other editors, they communicate with

4For the web browser market, the data set is constituted by vulnerabilities that a�ect only the web
browsers and for operation system markets only vulnerabilities that a�ect the operation systems.

6

each other and with the outside network through various protocols which guidelines are

maintained by public entities... Thus the security of a company's system depend on a

multitude of actors that in turn have various dependency each other. In fact, this complexity

already exists for the security of a single software. For example, any organization that has

some networked data accessible on the Web (e.g., e-commerce companies, website hosting

service providers) is necessarily dependent to the security of web browsers, since a web

browser is the main tool used to access to the World Wide Web. The security of a web

browser is in turn dependent to a multitude of components, from language like Javascript,

runtime environment like Adobe Flash, communication protocol and cryptography library

like OpenSSL, Plug-ins and web applications... Since the developers and users of each

components internalize a part of the security risk, each of them may have an incentive to

improve web browsers' security.

Depending on how a given actor values the externality caused by a vulnerability

disclosure (or more generally by the security of a software), we can categorize them as

following:

� Competitors: by competitors we designate software vendors that play in the same

market. Their behavior can be a�ected by the disclosure in several ways. First, it

may have a negative e�ect on the a�ected software reputation (i.e. the competing

product). This can be an incentive for a competitor to put more e�ort in �nding

new �aws in its adversary's product. At the same time, investing in a competitor's

product security can be costly and may not be so pro�table. Secondly, vulnerability

disclosure on one product in the market can deteriorate the overall reputation of

the market and thus have a negative e�ect on the overall demand. Considering

this e�ect, vulnerability disclosure may give an incentive to �rms to provide an

e�ort to secure competitors' product as much as theirs. More importantly, products

within the same market often share common vulnerabilities. Thus the e�ort made

by a vendor to improve its own product's security may have some spillover on the

security of competing products whether it is intentional or not. Overall, it is di�cult

to predict whether a vulnerability disclosure on a software would have a positive

7

or negative e�ect on a competitor's e�ort to improve the security of the software

a�ected by the disclosure.

� Users, downstream and upstream software vendors and service providers: they

are dependent to the security of the a�ected software in various degrees and thus

internalize a part of the risk due to vulnerability disclosure. If these actors have

the possibility to choose between switching to another product or spending some

e�ort to secure the vulnerable software, their behavior would depend on how high

the switching cost is compared to the security investment cost.

� Security �rms: these �rms provide security solution and services to vendors and

users. We include here �rms that sell all types of security solutions, from anti-virus

software to incident response services, as well as consulting services such as security

assessment or penetration testing. The pro�ts of a security �rm comes from selling

security solutions to its clients whether the client is the software vendor or the users,

and �nding a new vulnerability increases the value of its services. The disclosure

of a new vulnerability can work as a signal that the actual security quality of the

software may be worse than it was perceived until now. That is, the discovery of

a new vulnerability may be perceived as an opportunity to �nd some additional

vulnerabilities that are not disclosed yet. Thus it can be an incentive to security

�rms to look more thoroughly at the security of the a�ected software. Additionally,

a security �rm which has signed a contract with the software users or has sold a

security product to them internalizes a part of the user damage cost. Overall, one

can predict that vulnerability disclosure would incentivize security �rms to make

more e�ort in �nding new security �aws in the a�ected software.

� Academic researchers, public CERTs, and public organizations:5 we group in this

category actors for which the main goal is to improve global security rather than

making their own pro�t. They may internalize a part of the loss due to a vulnerability

disclosure on a software, but this might be insigni�cant compared to the end users.

5Private CERTs are accounted as a private company

8

� Individuals: in our dataset, the discovery of numerous vulnerabilities are credited to

an individual or a group of individuals without an a�liation. Even though they can

actually be a�liated to an organization, we consider that when the a�liation is not

speci�ed, the discovery of the vulnerability is voluntarily credited to the individual

itself. Here, we can relate the motivation of an individual to �nd and �x security

�aws to the intrinsic and extrinsic motives attributed to open source phenomenon,

which has been widely dealt in the literature. A vulnerability disclosure can signal

the existence of additional undiscovered vulnerabilities and give an incentive to

individuals that look for an opportunity to signal their skills to the community.

This categorization suggests that the public announcement of a vulnerability may a�ect

each type of actors for di�erent reasons and in di�erent degrees.

The raw data set we collected from Security Focus Bugtraq indicates in detail who

is/are credited for the discovery of each vulnerability. For the purpose of our study, we

have categorized them manually into the 5 types of third party actors - as categorized

above � and the software vendor. When a vulnerability is credited to more than one

contributor, we duplicate the observation as many times as the number of contributors

and we attribute to each observation a weight of 1
number _ of _ contributors .

It is worth noting that this categorization presents some limits in practice. Indeed, a

vulnerability identi�er does not belong necessarily to only one category. For instance, a

security expert can both come from an academic research laboratory, work for a company,

be a member of an open source community and participate in a vulnerability research

program organized by a security �rm, all at the same time.6

3.2 Empirical speci�cations

We use a di�erence-in-di�erence speci�cation to study how a vulnerability disclosure a�ects

the e�ort made by an actor to secure the software. This identi�cation strategy allows us

in particular to overcome the reverse causality issue between the number of vulnerabilities

6For example, if the discovery of a vulnerability is credited to an individual that was payed by a private
reward program, we consider that the e�ort is made by the organization that �nance the reward program
and not the individual.

9

and the media coverage intensity that we would have had if we simply used the intensity

of a vulnerability media coverage as our regressor.

Speci�cally, the baseline speci�cation we use is as following:

yit = � 0 + � 1aA i + � 1bA i � Pt + � 1cPt + FE i + FE t +
X it + � it ; (1)

Where, yit , our dependent variable, is the total number of vulnerabilities a�ecting

software i , reported at period t (monthly date). In this �rst speci�cation, the e�ort of

the di�erent actors are taken altogether and we �rst focus on how the disclosure a�ects

the global security investment level.A i (referring to �A�ected software") is a dummy

which indicates whether softwarei is the software targeted by the vulnerability disclosure

or not, i.e. whether it belongs to the treatment group (A i = 1) or to the control group

(A i = 0).7 Pt (referring to �treatment Period�) is a dummy which is equal to one for the

period we consider as �a�ected" by the critical vulnerability disclosure event. We use

4 alternative speci�cations for this treatment period: the �rst 6 months following the

vulnerability disclosure (post6m), the �rst year (post12m), the two �rst years (post24m),

and the whole period after the vulnerability disclosure (post). FE i and FE t are software

and time �xed e�ects. X it is a vector of control variables at the software level. It includes

the Sof twareAge and a dummy which indicates whether the vendor provides support

for the software at periodt (EndofLife). Lastly, � it is an error term. Our explanatory

variable of interest is the interaction termA i � Pt , which represents the di�erence in the

e�ect of the vulnerability disclosure � the treatment � between the treatment group and

the control group. We expect that the sign of the coe�cient � 1b is positive, i.e. that

a critical vulnerability disclosure would increase the global e�ort made in securing the

software that su�ers the vulnerability disclosure.

7In our data set, the treatment group is the software that su�ers the disclosure and all other software
in the same market belongs to the control group

10

Next, we estimate the following equation:

yijt = � 0 + � 1aA i + � 1bA i � Pt + � 1cPt + � 2A i � Pt � ThirdParty j + � 3A i � ThirdParty j

+ � 4Pt � ThirdParty j + � 5ThirdParty j + FE i + FE t +
X it + � it ;

(2)

where yijt is the number of vulnerabilities a�ecting softwarei , discovered by type of

actors j at period t. ThirdParty j is a dummy which is equal to 0 if the identi�er of

the vulnerabilities is the software vendor and equal to 1 if it is a third party actor. The

interaction between our treatment variableA i � Pt and the ThirdParty j dummy allows us

to measure the di�erence between the impact of the vulnerability disclosure on a third

party actor and on a software vendor (the software vendor being the base value).

Lastly, we use the following speci�cation to study the e�ect of the vulnerability

disclosure on each actors separately:

yijt = � 0 + � 1aA i + � 1bA i � Pt + � 1cPt

+
X

K j 2 Identif ier _ T ype

� K j
2 A i � Pt � K j + � K j

3 A i � K j + � K j
4 Pt � K j + � K j

5 K j

+ FE i + FE t +
X it + � it ;

(3)

whereIdentif ier _ Type= f Competitorsj ; Usersj ; Sec_ f irms j ; Individuals j ; Public_ orgj g

and K j 2 Identif ier _ Type is a dummy equal to one ifj belongs to the identi�er type

K. In this speci�cation, the coe�cients of interest are the �ve di�erent � K j
2 , which re�ect

the di�erence in the e�ect of a vulnerability disclosure on each actors' behavior, while the

base value is the software vendor's behavior.

3.3 Dependent variable

Our dependent variable for the �rst speci�cation (See Subsection 3.2 for the econometric

speci�cations) is the total number of vulnerabilities discovered in each software, each

month, while for the second and third speci�cations, it is the number of vulnerabilities

discovered in each software each month by each type of actors. In order to build our

11

dependent variable, we collected information from Security Focus Bugtraq from January

2009 to December 2018 on all the vulnerabilities that a�ect a software that belongs to one

of the three markets we study. The reason we limit our study to this period is because

a considerable amount of manual checks is needed to build our data set, especially in

order to categorize the actors that have identi�ed each vulnerabilities. We consider that

a period of 10 years is large enough to have a robust result. For each vulnerability, we

collected the date it was disclosed, the list of the vulnerable software and the identi�ers

of the vulnerability. For the three speci�cations, we have a balanced panel data set over

time. The description of the variables are reported in Table 4 and the summary statistics

are reported in Table 6.

The raw data consists in each vulnerabilities associated to one or multiple software,

disclosed at a given date. All the vulnerabilities in our data set have a patch at the date

they are disclosed to public.8 For vulnerabilities that a�ect more than one product, we

have duplicated the observation in order to take the vulnerability into account for each

software. Additionally, the discovery of each vulnerability is credited either to an individual,

an organization, or a group of individuals and organizations. For each vulnerability, we

manually indicated to which type of actors the identi�ers belong to. We have categorized

the actors into 6 groups: the software vendor, academics and public organizations, users

(including downstream and upstream vendors, companies that use the software or provide

a service related to the a�ected vulnerability), security �rms and individuals. When a

vulnerability is credited to more than one contributor, we replicate the observation as

many times as the number of contributors and we attribute to each observation a weight

of 1
number _ of _ contributors .

This raw data at vulnerability level is aggregated at a monthly level in 3 di�erent

manners so as to be used in the 3 di�erent speci�cations we presented in Subsection 3.2.

For the �rst data set, we count the number of vulnerabilities a�ecting each software each

month without considering who is the actors that contributed. In the second data set, we

de�ne a dummy variable which indicates whether the identi�er of the vulnerability is the

8We exclude from our data set vulnerabilities that cannot be �xed with a patch. Within the scope we
study, only 2 vulnerabilities belongs to this case.

12

software vendor or a third party actor (ThirdParty dummy). Then we count the number

of vulnerabilities in each software each month either by a third party or the software

vendor. In the third data set, we count the number of vulnerabilities in each software, each

month for each type of actors. An example of how we have built our dependent variable is

illustrated in Table 5.

3.4 Identi�cation of the treatment variable

Our goal is to measure the impact of a vulnerability disclosure on vulnerability discovery

activity. In the three markets we study, an average of 5 to 14 vulnerabilities are reported

each month for each software, all severity level taken together (See summary statistics

Table 6). Measuring the e�ect of all of these vulnerability disclosure separately is not

possible; we thus focus on the e�ect of a disclosure that is su�ciently serious and critical

to have a signi�cant impact compared to other events. For that, we need to identify

a vulnerability that have raised a particularly large media attention compared to other

vulnerabilities. By considering a vulnerability that has been particularly critical and highly

publicized compared to other, we are able to claim that the e�ect we attribute to the

disclosure is su�ciently large compared to the impact of other events.

In order to identify a vulnerability disclosure that has received a particularly intense

media coverage, we use Google Trend (http://trends.google.fr), which allows us to

visualize the relative evolution of a given search term on Google Search compared to other

search terms. Indeed, we consider that the overall information seeking behavior on a search

engine is correlated to the magnitude of the media coverage. Speci�cally, we checked the

search trend on Google for the terms that associate the name of a software and the word

�vulnerability�. For example, in the case of the web browser market, we compare the search

trends for the terms �Internet Explorer vulnerability�, �Chrome vulnerability�, �Safari

vulnerability�, �Firefox vulnerability� and �Opera vulnerability� (See Figure 1). For each

of the three markets we study, we identify one vulnerability that have generated a peak in

web search volume according to Google Trend. We detail below the three vulnerabilities

identi�ed as our treatments in each market.

13

� Treatment for the case of web browsers: Microsoft Internet Explorer CVE-2014-1776

Zero-Day disclosed in April 2009

Figure 1: Google Search trend for web browser vulnerabilities from 2009 to 2018

In Figure 1 we observe a peak search volume in mid 2014 for the search term �Internet

Explorer vulnerability�. This corresponds to a vulnerability that was announced

in April 26th 2014 by Microsoft and the security �rm FireEye. It is a zero day

vulnerability � i.e. a vulnerability that did not have a security patch at the time it

was disclosed � which allows an attacker to take full control over the system after a

user views a speci�c web page in its web browser. Its severity scores are evaluated at

the highest level of criticality and it a�ects all existent versions of Microsoft Internet

Explorer.9 The vulnerability was exploited in several targeted attacks. The exact

date the vulnerability was discovered and reported to Microsoft is not known, but

a patch was published on the 1st May, after the public disclosure. The �aw was

so widespread that Microsoft has released patches for Windows versions for which

support was already ended.10

9These scores are called Common Vulnerability Scoring System (CVSS) and prioritize the vulnerabilities
according to the threats they represent. Scores are calculated based on a formula that depends on several
metrics that approximate the ease of exploit and the impact of exploit. The scores range from 0 to 10,
with 10 being the most severe. While the average severity score for web browser vulnerabilities is around
5, this vulnerability presents a score of 10 for every criteria.Source: the National Vulnerability Database

10Source: https://nvd.nist.gov/vuln/detail/CVE-2014-1776 , https://blogs.technet.
microsoft.com/srd/2014/04/26/more-details-about-security-advisory-2963983-ie-0day/ ,
https://www.fireeye.com/blog/threat-research/2014/04/new-zero-day-exploit-targeting-internet-explorer-versions-9-through-11-identified-in-targeted-attacks.
html

14

� Treatment for the case of mobile OS: Google Android Stagefright vulnerability

disclosed in July 2015

Figure 2: Google Search trend for mobile OS vulnerabilities

The peak search volume we visualize in Figure 2 corresponds to the disclosure of

Android StageFright vulnerability in July 2015. Indeed, the security �rm Zimperium

announced on July 27th that it had discovered a serious vulnerability in the core of

Google Android operation system, which is a �aw related to the way Android handled

media, allowing a remote code execution without users opening a malicious �le. News

headlines announced that nearly a billion of Android devices could potentially be

taken over without their users even knowing it.11 The vulnerability was previously

reported to Google in April 2015 and details of an exploit was disclosed at the

BlackHat conference in August 2015. Google's security team released a patch for the

initial bug within weeks, but it inspired a wave of new attacks on the way Android

processes audio and video �les. The �rst copycat bugs were reported just days after

the �rst patch, with more serious exploits arriving months later.12

� Treatment for the case of desktop OS: Microsoft Windows Eternal blue and the

famousWannacry malware

Figure 3 plots the relative search volumes for terms that are the most popular in

11sourcehttps://www.theguardian.com/technology/2015/jul/28/stagefright-android-vulnerability-heartbleed-mobile
http://blog.zimperium.com/experts-found-a-unicorn-in-the-heart-of-android/

12https://www.theverge.com/2016/9/6/12816386/android-nougat-stagefright-security-update-mediaserver

15

Figure 3: Google Search trend for Desktop and Server OS vulnerabilities

Google search related to operation systems' vulnerability. Note that we have also

included CentOS and we include the term Ubuntu while Linux is already included

in another search term. Search terms related to other operation systems are not

included in the graph because they do not display su�cient search volumes. The

peak search volumes occurs in mid 2017, which corresponds to the famous WannaCry

ransomware attack happened in May 2017. The WannaCry attack uses an exploit that

is originally created by the U.S. National Security Agency (NSA) namedEternalBlue,

which exploits the Microsoft Server Message Block, a network �le sharing protocol

that allows applications on a computer to read and to write to �les within the same

network.13 The exploit was leaked by a hacker group named Shadow Brokers in

April 14th 2017 and was used in WannaCry ransomware attack on May 12th 2017.

The exploit was also used to carry out the NotPetya cyberattack on late June 2017.

Previously, the NSA warned Microsoft after learning about EternalBlue's possible

theft, allowing the company to prepare a software patch issued in March 2017, after

cancelling all security patches in February 2017.14 Microsoft released a patch event

for Windows XP which support ended in 2014.

The disclosure of these three particularly critical vulnerabilities are considered as the

13The vulnerability is denoted by entry CVE-2017-0144 in the Common Vulnerabilities and Exposures
(CVE) catalog.

14source: Wikipedia

16

treatments in each market. We consider the software that is targeted by the vulnerability

disclosure as the treatment group while other software in the market belongs to the control

group. With regard to the treatment period, we consider that a �treatment� begins at the

date the vulnerability is disclosed to public, which does not systematically corresponds to

the date of the peak search volumes. Indeed, in the case of Microsoft Windows Eternal

Blue, the media coverage happens on the day the WannaCry attack happens, which is

2 months after the actual disclosure of the vulnerability. We consider four alternative

treatment periods which correspond to a 6 months to 2 year-period after the disclosure.

Speci�cally, we consider the �rst 6 months after the disclosure, the �rst year, the �rst two

years, and the whole period after the disclosure as the alternative treatment periods.

Besides, in the three cases we study, the software vendor who is targeted by the critical

vulnerability disclosure is alerted about the existence of the vulnerability before the public

announcement. This means that an increase in the number of vulnerabilities reported

on Security Focus at the moment (just before or just after) the vulnerability is disclosed

� our treatment � can be due to an action that does not re�ect the actual e�ort put in

vulnerability discovery activity. Indeed, the software editor can suddenly become responsive

in patching vulnerabilities that were actually reported by third party identi�ers before the

critical disclosure happens. To overcome this bias, we exclude all the vulnerabilities that

are disclosed during a six months period that surrounds the disclosure date. Indeed, most

organizations apply these days a disclosure policy of 90 days.15 Excluding the last three

months preceding the disclosure and the �rst three months following it insures that we do

not take into account the �aws that would have been reported to the vendor before the

discovery of the critical vulnerability and which would have been �xed by the software

editor in response to the disclosure.

3.5 Descriptive statistics

In this subsection, we discuss some descriptive statistics related to the dependent variable

and the impact of the treatment. Additionally, we check whether our data satis�es the

15In the case of web browsers, Jo (2017) estimates the average patching time by a software vendor at 88
days.

17

parallel trend assumption to ensure that we can use a di�erence-in-di�erence estimation.

Then we discuss the distribution of the di�erent actors' contribution in our data set.

Figure 4: Dependent variable and parallel trend assumption for Speci�cation 1

(a) Web browser case (b) Mobile OS case

(c) Desktop OS case

In Figures 4a, 4b, and 4c we �rst plot on the �rst row (graph on the top side) the

evolution of the dependent variable over time, for the treatment group and the control

group. The graphs on the second row display the coe�cients of the interaction term between

the year dummies and theA i (A�ected Software) dummy which identi�es whether the

observation belongs to the treatment or the control group, with 95% con�dence intervals.

The plotted estimation includes all the control variables and �xed e�ects included in

Speci�cation 1. This visual inspection allows us to check the validity of the parallel trend

assumption.

First of all, in each case, we do not observe any remarkable di�erence in the evolution

of the number of vulnerabilities between the treatment and the control groups, before the

critical vulnerability disclosure occurs. Each graph on the second-row also shows that the

18

di�erence between the treatment and the control groups is not varying signi�cantly over

time during the non-treated period. Thus we consider that the parallel trend assumption

is satis�ed. Then, for each cases, we visualize a signi�cant increase in the number of

vulnerabilities after the year the public announcement of a critical vulnerability occurs. We

note that for Figure 4a and Figure 4c, the number of vulnerabilities drastically increases

just after the disclosure, while it is less the case for Google Android. There are two

possible explanations for this immediate reaction. First, as mentioned in subsection 3.4,

the sudden increase in the number of vulnerabilities could re�ect the software vendor's

behavior that suddenly publishes patches for security �aws that were discovered before, to

lessen the negative impact of the announcement of a critical vulnerability. We deal with

this potential source of bias by excluding a 6-month period before and after the disclosure

date. Secondly, �rms that actively participate in �nding vulnerabilities and securing the

software could be alerted in advance about the existence of the �aw before its public

disclosure (like the case of Intel we mention in our introduction), which then would not

distort our result.

Figure 5: Di�erence between treatment and control group's outcome, comparison of the
software vendor's contribution and third party actors' contribution

(a) Web browser case (b) Mobile OS case

(c) Desktop OS case

19

	Introduction
	Literature Review
	Data and Empirical Strategy
	Categorization of the actors
	Empirical specifications
	Dependent variable
	Identification of the treatment variable
	Descriptive statistics

	Results
	Interpretation and conclusion

