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Despite significant innovations in IT security products and research over the past 20             
years, the information security field is still immature and struggling. Practitioners lack the             
ability to properly assess cyber risk, and decision-makers continue to be paralyzed by             
vulnerability scanners that overload their staff with mountains of scan results. In order to              
cope, firms prioritize vulnerability remediation using crude heuristics and limited data,           
though they are still too often breached by known vulnerabilities for which patches have              
existed for months or years. And so, the key challenge firms face is trying to identify a                 
remediation strategy that best balances two competing forces. On one hand, it could             
attempt to patch all vulnerabilities on its network. While this would provide the greatest              
coverage of vulnerabilities patched, it would inefficiently consume resources by fixing           
low-risk vulnerabilities. On the other hand, patching a few high-risk vulnerabilities would            
be highly efficient, but may leave the firm exposed to many other high-risk             
vulnerabilities. Using a large collection of multiple datasets together with machine           
learning techniques, we construct a series of vulnerability remediation strategies and           
compare how each perform in regard to trading off coverage and efficiency. We expand              
and improve upon the small body of literature that uses predictions of published exploits,              
by instead using exploits in the wild as our outcome variable. We implement the machine               
learning models by classifying vulnerabilities according to high- and low-risk, where we            
consider high risk vulnerabilities to be those that have been exploited in actual firm              
networks.  
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Introduction 
A critical challenge for many modern organization is understanding how to minimize the cost of 

managing and protecting its information assets and business systems. A core component of this challenge 

is adopting a vulnerability management process that can detect, and remediate known vulnerabilities.  1

Unfortunately, despite decades of research and technical innovations, there have been few advances in 

remediation practices. Given that firms will always have more exposed vulnerabilities than resources to 

fix them, firms struggle trying to develop and apply a remediation strategy that will optimally patch those 

vulnerabilities that pose the greatest risk, while also deprioritizing those vulnerabilities that pose the 

lowest risk. 

In theory, a firm seeks to balance two competing forces. On one hand, it could attempt to patch all 

vulnerabilities identified on its network, which would provide the greatest coverage of vulnerabilities 

patched, but would inefficiently consume resources to fixing vulnerabilities that pose a lower risk. On the 

other hand, the firm could patch a small set of high-risk vulnerabilities. While this strategy might be 

highly efficient, many other potentially high-risk vulnerabilities may remain exposed. In practice, most 

firms are not sophisticated about managing this tradeoff and use heuristic strategies to prioritize their 

remediation efforts; for example, a common approach is to remediate all vulnerabilities above a certain 

severity score. However, many of the common heuristics used by firms have been found to be 

sub-optimal (Dey, Lahiri, and Zhang 2015; Beattie et al. 2002) and in some cases, no better than 

randomly choosing vulnerabilities to remediate (Allodi and Massacci 2014).  

One of the key reasons the current approaches are ineffective is that firms cannot effectively assess 

whether a given vulnerability poses a meaningful threat. For instance, prior work suggests that of all the 

publicly known vulnerabilities, only 10-15% actually ever have a known exploit written for them, and 

even fewer still are ever weaponized as part of hacking toolkits (Bozorgi et al. 2010). An even smaller 

proportion of vulnerabilities are ever targeted against an organization in the wild. Sabottke, Suciu, and 

Dumitras (2015) find that as few as 1.4% of published vulnerabilities have exploits which have been 

observed in the wild. Given that so few vulnerabilities are actually a focus for attackers in the real world, 

a promising approach towards remediation is to identify vulnerabilities which are likely to be actually 

exploited, and therefore prioritize firm efforts towards remediating those vulnerabilities first.  

1 We are not concerned with zero-day vulnerabilities in this paper. 



Because an exploit observed in the wild is the most relevant proxy for the probability that an exposed 

vulnerability can be used to compromise a firm’s network, our focus in this manuscript is on building 

predictive models that can identify an exploited vulnerability.  

We start by generating ground truth data of whether a vulnerability has an exploit observed in the wild. 

We aggregate data from a variety of sources, including a private dataset generated by a partner security 

firm that monitors more than 100,000 corporate networks (almost 200 billion observations of network 

traffic). To our knowledge, ours is the most comprehensive ground truth data used in this kind of 

prediction effort, and the only one to rely on data from a diverse set of real-world intrusion detection 

systems. Notably, we observe exploits in the wild for 5.5% of vulnerabilities in our dataset compared to 

1.4% in prior works. We also collect a novel set of features for prediction; for example, we text mine 

detailed descriptions of each vulnerability to extract 191 tags (e.g. “buffer overflow”, “denial of service”) 

that are included as features in our prediction model. Combining this unique dataset with gradient boosted 

trees we build a predictive model with exploits in the wild as the target variable.  

The combination of a more comprehensive measure of exploits in the wild and novel features for 

prediction results in a model that can effectively identify vulnerabilities with a high risk of exploitation in 

the wild. Our model achieves an accuracy of 94.5 (with the ROC AUC of 0.91) and produces a significant 

lift in prediction coverage and efficiency compared to prior work (as shown in Figures 1a and 1b).  2

  

2 False Positive Rate (FPR), and True Positive Rate (TPR). 



Figure 1: a) ROC curve of our model output and b) comparison of exploit prediction models (Sabottke, 

Suciu, and Dumitras 2015)  

More importantly, the lift in prediction accuracy that our model provides significantly improve the 

efficiency of remediation strategies. Informed by our prediction model, a firm seeking broad coverage of 

vulnerabilities that are exploited in the wild (e.g. 70%) can achieve this by remediating only ~7,900 

vulnerabilities. On the other hand, this same level of coverage would require the remediation of more than 

3 times the vulnerabilities using both comparable heuristic approaches (~34,000) and ML models built on 

the features utilized by prior works (~30,000). This reduction in the number of vulnerabilities that a firm 

needs to remediate is due to a dramatic decrease in the number of false positives remediated under an 

approach informed by our model. 

Our work contributes to the literature on the economics of information systems, and computer science 

literature on vulnerability remediation. In addition, we believe this work has significant implications for 

decision makers when assessing cyber security risk, to include firms, federal agencies, and national 

security policy makers. 

In further work, we will examine more deeply the mechanics behind our model, identify which features 

are most important to predicting exploits in the wild, and generate predictive models for important subsets 

of vulnerabilities (e.g. based on the most popular vendors).  

The next section discusses related literature, followed by a description of the datasets used in this 

research. We then present the results from 3 separate vulnerability remediation strategies using simple 

rule-based approaches, followed by a full machine learning prediction model. We conclude with a 

discussion on limitations and conclusion. 

Related Literature 
This paper draws on a body of work focused on the economics of information security. Our work is 

particularly relevant to a stream of research evaluating the efficiency of vulnerability remediation; a key 

function related to how organizations proactively guard against security incidents. This stream of research 

includes evaluations of the appropriateness of strategies for identifying new vulnerabilities and 

disseminating that information to relevant stakeholders (Kannan and Telang 2005; Ransbotham, Mitra, 

and Ramsey 2012; Cavusoglu, Cavusoglu, and Raghunathan, 2007 Arora, Telang, and Xu 2008), the 

design of incentives and liability with respect to vulnerability remediation (August, Dao, and Kim, 2019; 

August and Tunca. 2011; Cavusoglu, Cavusoglu, and Zhang 2008), and the efficacy of strategies that firm 



take when attempting to prioritize the vulnerabilities they address (Dey, Lahiri, and Zhang 2015; Beattie 

et al. 2002; Allodi and Massacci 2014). A consistent finding in this stream of research is that the status 

quo for how organizations address vulnerability remediation is often suboptimal and has significant room 

for improvement. For example, Allodi and Massacci (2014) evaluate the effect on exploit risk of 

prioritizing vulnerabilities with high severity scores (a common practice in organizations) is equivalent to 

randomly selecting vulnerabilities to address. 

Our work also relates to an emerging body of research coupling machine learning methods with diverse 

feature sets drawn from information security contexts and explores the value of prediction for information 

security management (Münz, Li, and Carle, 2007; Lakhina, Crovella, and Diot 2004; Garcia-Teodoro et 

al., 2009; Lakhina, Crovella, and Diot 2004). This literature holds significant potential value for a few 

reasons. First, information security contexts are marked by considerable technical and managerial 

uncertainty. The management of this uncertainty is exacerbated by the limited resources that most 

organizations dedicate to security. Second, there are long-standing challenges with properly leveraging 

massive collections of data (network traffic data, user logs, etc.) that hold within them relevant insights 

for efficiently managing current and future security risks. For instance, current tools are often inadequate 

at prioritizing and identifying key risks and often inundate security professionals with too many alerts and 

false alarms. As a result, critical warnings are either never generated or lost in a sea of other, often less 

important, warnings. Third, vulnerabilities may be unknown to organizations (e.g. zero days) and thus 

difficult to identify with standard approaches. In these cases, machine learning methods (e.g. those 

focused on anomalous pattern detection) can identify new attacks by recognizing changes in network or 

user behavior (Garcia et al. 2009; Münz, Li, and Carle, 2007).  

A nascent stream in this body of work most directly relates to our work and combines machine learning 

approaches with a variety of datasets in order to reduce the uncertainty surrounding exploit risk of 

disclosed vulnerabilities (Bozorgi et al. 2010; Sabottke, Suciu, and Dumitras 2015; Edkrantz and Said 

2015; Bullough et al. 2017). While these works start to bridge the gap between vulnerabilities and the 

real-world risk they present to systems, the majority of these works (with the exception of Sabottke, 

Suciu, and Dumitras 2015) focus on vulnerabilities with a published exploits as opposed to an exploit 

observed in the wild. This is because predicting actual exploits in the wild remains a difficult prediction 

problem. In particular, and as we noted previously, exploits in the wild are rare. Of all the vulnerabilities 

that are disclosed, only a small subset have written exploits. Even fewer still have exploits which are 

weaponized and become available as part of hacking toolsets. Smaller still is the proportion of exploits 



that are observed in use in the real world (e.g. on corporate networks). For example, prior works find that 

less than 1.4% of disclosed vulnerabilities are observed in the wild. 

This raises two notable problems for these prediction efforts. First, classification methods have trouble 

disentangling rare events and require rich feature sets to differentiate vulnerabilities with high risk of 

exploit from more benign vulnerabilities. Second, there is limited ground truth data on which exploits are 

actually being levied against organizations. For example, Sabottke, Suciu, and Dumitras (2015) utilize 

available signature databases from Symantec to identify vulnerabilities likely to be in the field, but these 

data have notable limitations as they are not based on actual network traffic from corporate networks and 

only capture vulnerabilities in Microsoft products. As we discuss in the following section, a key 

contribution of our work is to address these data limitations to build a more accurate and usable prediction 

model for vulnerability remediation. We do so by leveraging a unique set of features for prediction and 

amalgamating data sources to more comprehensively capture exploits that exist in the wild. 

Data 
This paper leverages multiple datasets collected in partnership with Kenna Security, a large, U.S.-based 

vulnerability and threat management company.  As a foundation, we use a dataset of vulnerabilities 3

published by MITRE’s Common Vulnerability Enumeration (CVE) effort between 2009 and 2018. The 

CVE list is widely known, and is the authoritative source of publicly known vulnerabilities. MITRE’s 

enumeration includes a unique identifier (CVE number), a short free-text description, and a list of 

references to additional details of the vulnerability (in the form of URLs). After cleaning, and including 

only valid and fully documented vulnerabilities, this dataset contains over 75k observations. While CVE 

data exists for years prior to 2009 and past 2018, we limit the sample for the availability of data across all 

categories of features. 

We also collect additional information for each CVE. We use NIST’s National Vulnerability Database 

(NVD) to gather the vulnerability score and vulnerability characteristics, as defined by the Common 

Vulnerability Scoring System (CVSS). We also collect the Common Platform Enumeration (CPE) 

information, which provides a standard machine-readable format for encoding names of IT products, 

platforms and vendors. 

Next, we retrieved the descriptive text from the list of references present in each CVE. We then extracted 

common multiword expressions from the raw text using Rapid Automatic Keyword Extraction (Rose et 

3 See http://www.kennasecurity.com 



al, 2010) and manually culled and normalized a list of 191 tags encoded as binary features for each 

vulnerability. 

For each vulnerability, we also gather real-world information about its prevalence and exploitability. First 

we gather information about whether exploit code was written and published for it, and then whether the 

vulnerability was exploited in real-world attacks. These are related, but not identical data points. The 

former relates only to vulnerabilities for which exploit code has been written (but not used), and the latter 

relates to actual exploits observed in (at least attempted) malicious attacks. Since there is no authoritative 

or complete source of exploit information, exploit data were assembled across many sources. Data 

relating to exploits found in the wild were collected from the collective intelligence of FortiGuard Labs  4

which draws from Fortinet’s vast array of devices/sensors collecting billions of threat events and incidents 

observed in live production environments around the world. Evidence of exploitation was also collected 

from SANS Internet Storm Center, Secureworks CTU, Alienvault’s OSSIM metadata, and Reversing 

Labs metadata. Information about written exploit code comes from Exploit DB, multiple exploitation 

frameworks (Metasploit, D2 Security’s Elliot Kit and Canvas Exploitation Framework), Contagio, 

Reversing Labs, and Secureworks CTU. In total, we acquired 4,183 observations of unique exploits used 

in the wild, and 9,726 observations of written exploit code.  

Finally, through Kenna Security, we obtained a count of the prevalence of each vulnerability derived from 

scans of hundreds of corporate (customer) networks derived from vulnerability scanner information. This 

rich feature-set of real-world data is used to enhance the performance of the models.  

Note that we removed those features that were sparsely populated with zero or near-zero variance. For 

binary variables, near zero-variance was set at a threshold 0.5%, and so features with less than 0.5% 

unique values were removed. Summary information for these data are shown in Table 1.  

Table 1: Data Summary 

Data Type Source(s) Observations(n) Features(p)  5

CVE Number   6 Mitre CVE database, 2009-2018 75,976 - 

CVSS score  7 NIST’s NVD 75,423 20 

4 See https://fortiguard.com/ 
5 This refers to the number of variables collected per data source. 
6 The CVE number is just an identifier to tie disparate data sets and was not used in any model 
7 The version 2 base score, temporal score, and the 6 base metrics, each with 3 values per metric. 



Products affected  8 NIST’s CPE 75,582 43 

Vendor affected  9 NIST’s CPE 75,582 26 

Reference Lists MITRE’s CVE list 75,976 31 

Vulnerability Tags
 10

Text Scraped from referenced URLs 
listed in MITRE’s CVE list 

68,491 83 

Exploitation 
observed in the 
wild 

FortiGuard Labs, SANS Internet Storm 
Center, Securewords CTU, Alienvaults 
OSSIM metadata, and Reversing Labs 
metadata. 

9,726 1 

Exploit code 
published 

Exploit DB, exploitation frameworks 
(Metasploit, D2 Security’s Elliot Kit and 
Canvas Exploitation Framework), 
Contagio, Reversing Labs and 
Secureworks CTU 

4,183 4 

Vulnerability 
prevalence data 

Kenna Security 35,405 1 

 

Next, we highlight three of the key data sources used in our prediction models, CVSS scores, published 

exploits, and reference tagging. 

 

CVSS 

The Common Vulnerability Scoring System (CVSS v2) was first developed in 2003 and has become an 

international  and de facto standard for measuring the severity of a vulnerability. CVSS produces a 11

numeric score between 0 (lowest severity) and 10 (highest severity) and is fundamentally an ordinal scale, 

based on 6 immutable characteristics of a vulnerability, and is independent of any user environmental 

configurations, security controls, or known exploits. Figure 2 shows descriptive information regarding the 

distribution of vulnerabilities by CVSS (v2) score. In addition, for each integer range, we show the 

8 Initially we constructed a dataset of 28,647 product names, but reduced this to 43 features that exceeded threshold 
for determining near zero-variance. 
9 Initially we constructed a dataset of 11,554 attributes, but this was again reduced to the 26 most common without 
near-zero variance. 
10 Initially we constructed a dataset of 191 commonly use expressions, but this was again reduced to the 83 most 
common without near-zero variance. 
11 ITU-T X.1521. 



proportion of vulnerabilities that have been exploited. For example, of all vulnerabilities, 4,686 were 

given a score of 10, of which almost 17% of which were observed to be exploited. 

 

Figure 2: Exploited vulnerabilities, by CVSS severity 

Visual inspection shows that vulnerabilities with a CVSS score of 9 or 10 have a higher proportion of 

exploited vulnerabilities, relative to the base rate of 5.5%. Also, just under half of all exploited 

vulnerabilities have a CVSS score of 9 or higher.  

Published Exploits 
As mentioned, we consider published exploits to be software code posted publicly and designed to 

compromise a weakness in another software application, while exploits in the wild are instances of this 

code observed to be targeted at actual corporate networks. There is an important relationship to note 

between published exploits, and exploits found in the wild, as shown in Figure 3. 

 

Figure 3: Published exploits vs exploits in the wild 



First, notice that overall our dataset contains 9.7k published exploits, and 4.2k observed exploits in the 

wild. That is, about 12.8% (9.7k / 76k) of all vulnerabilities between 2009 and 2018 had published exploit 

code, while only about 5% (4.2k / 76k) of all vulnerabilities were exploited in the wild. Further, only 

about half of all exploited vulnerabilities (2.1k) have associated published code. This is, in itself is, an 

important finding because it suggests the need for an improved approach to vulnerability remediation. 

Specifically, previous research has used published exploits as the outcome target, while exploits in the 

wild represents, what we believe, is the preferred outcome measure. A table of results for all years is 

provided in the Appendix. 

Reference tagging 
Reference tags as used in our data are collected by a multistep process. We first begin by using the text 

description from MITRE’s CVE list, then scrape the text from the URLs listed in the references. We then 

extract “multi-word expressions” from the text and then manually curate a list of multi-word expressions. 

Note that other research uses a simple “bag of words” (single word frequencies independent of context) 

approach. The result is tagging vulnerabilities with expressions like “code execution,” “directory 

traversal,” “sql injection,” and “denial of service.”  

Our justification for identifying the multi-word expressions is that there is a significant difference in 

exploiting a “memory corruption” vulnerability and a “double free memory” vulnerability. Using 

multi-word expressions enables us to isolate those two concepts into 2 distinct features.  

Additionally, we found that the brief text descriptions in MITRE’s CVE list did not adequately capture all 

the complexities behind each vulnerability. By scraping the referenced websites in each CVE, we expect 

to achieve a more complete text descriptions of attributes that may be sought out and exploited by 

attackers (e.g. authenticated, local/remote, labels and phrases that describe the vulnerability itself, and the 

impact). The use of the Rapid Automatic Keyword Extraction (Rose et al, 2010) technique along with 

manual curation was used to tag concepts within each vulnerability and is expected to outperform 

previous. Figure 4 shows a random selection of 20 tags from the CVE references, along with the overall 

frequency (text at the top of each bar) and the proportion of vulnerabilities with that tag that were 

observed to be exploited in the wild. After removing tags with near-zero variance, our final reference tag 

feature set has 83 individual tags.  



 

Figure 4: Prevalence and exploitation of multiword expressions (20 randomly sampled shown). 

Next, we describe the model evaluation criteria and machine learning configuration. 

Model Development 

Exploited in the wild as the Outcome Measure 

Before we describe the modeling approach, we first describe what we mean by risk and therefore how we 

classify a high-risk vulnerability. Many information security best practices, including the U.S.-based 

NIST recognize that risk is a combination of threat (capability and intent of the threat actor), vulnerability 

(weakness or exposure) of the targeted system, and the impact (consequence or disruption) to the 

organization conditional on a successful attack (See Figure 3, p12, NIST SP 800-30). In this research, we 

seek to develop vulnerability remediation strategies that are agnostic to individual firms, and so we 

restrict our definition of risk by abstracting away firm-specific criteria such as a firm’s security controls 

and impact to the organization. As a result, for the purpose of this article, our use of risk reflects threat 

only -- the exposure posed by an exploitable vulnerability. 

As mentioned, while previous work uses published exploits, we believe this is a premature measure, and 

that the most appropriate measure of threat relates to whether a vulnerability has actually been exploited 

in the wild, and if it has, we then consider the vulnerability to pose a high risk to the organization. 

Evaluation criteria 
Throughout our analysis, we will evaluate the performance of the models along four dimensions: 

coverage, efficiency, accuracy, and level of effort.  

Coverage (recall) and efficiency (precision) are two common evaluation criteria used in information 

theory and machine learning (classification) models. In our context, coverage measures the completeness 



of remediation. For example, of all vulnerabilities that should be remediated, what percentage was 

patched?: if 100 vulnerabilities are being exploited, and yet only 15 are remediated, the coverage of this 

prioritization strategy is 15%. Coverage is represented mathematically as the true positives divided by the 

sum of the true positives and false negatives, or TP / (TP + FN), and is maximized as the number of false 

negatives tends to zero. 

On the other hand, efficiency measures the optimality of remediation efforts. Of all vulnerabilities 

remediated, what percentage should have been addressed? For example, if we remediate 100 

vulnerabilities, but only 15 are ever exploited, the efficiency of this strategy would be 15%. The other 

85% represents resources that would have been better spent elsewhere. Efficiency is represented 

algebraically as true positives divided by the sum of the true positives and false positives, or TP / (TP + 

FP), and is maximized as the number of false positives tends to zero. 

The ideal strategy, of course, achieves 100% coverage and 100% efficiency (i.e. only patch those that you 

need to, and no more), but a trade-off exists between the two. A strategy that prioritizes only high-risk 

vulnerabilities may have a good efficiency, but it comes at the price of low coverage, because many 

vulnerabilities with existing exploits have a low severity score. Conversely, we could improve coverage 

by remediating more vulnerabilities with high severity scores, but suffer in efficiency due to fixing 

vulnerabilities that were never exploited and therefore pose lower risk. 

Accuracy measures the overall correctness of predictions. Accuracy is the sum of the true positives and 

negatives divided by the sum of samples, or (TP + TN) / (TP + TN + FP + FN).  12

A given set of coverage and efficiency parameters uniquely defines the performance of a remediation 

strategy. What this does not explicitly communicate, however, is the number of vulnerabilities that the 

organization would need to patch in order to satisfy that strategy. Therefore, we define level of effort, as 

one measure of the cost to a firm from that remediation strategy.   13

Basic and machine learning models 
In the next section we explore 3 distinct vulnerability remediation strategies that firms may employ. Each 

strategy uses a different set of features (i.e. distinct independent variables), and for each strategy, we first 

compute the outcome parameters (coverage, efficiency, accuracy, and the level of effort) from a simple 

12 This particular metric can create misleading results when the data is imbalanced such as we have in the 
exploitation data. Since only 5.5% of our vulnerabilities have been observed exploited in the wild, a simple model of 
remediating nothing yields 94.5% accuracy. 
13 Certainly this is an imperfect measure of the cost of patching to firm because of the many efficiencies of scale 
involved in enterprise patch management. 



rule-based approach, and then compare those results to a machine learning model using the same feature 

sets (but which computes additional variable interactions). 

All machine learning models are gradient boosted trees, generated with Extreme Gradient Boosting 

(XGBoost) (Chen and Guestrin, 2016). We also explored using the Random Forest and linear SVM 

algorithms. However with the area under the precision-recall curve being 0.51 for random forest and 

0.494 for the linear SVM, we selected XGBoost as our final model with the AUC of 0.55 . Because of 14

the extreme class imbalance, we down-sampled (Kubat and Matwin, 2000) the majority class during 

training. However when evaluating the models we use the entire (unbalanced) test sample. Because of the 

sparseness of some features, we performed 5-fold stratified cross-validation repeated 5 times to limit 

possible over-fitting in the training. Since each model produces a probability that a particular sample will 

or will not be exploited-in-the-wild, a cutoff must be selected to classify the data. This cutoff is tunable in 

a way that can balance efficiency vs coverage. We select a cutoff value which maximizes the F1 score 

(Chinchor, 1992), which is the weighted harmonic mean of coverage and efficiency. 

Feature-Based Remediation Strategies 

CVSS Score 

A primary aspect of vulnerabilities often considered during remediation decisions is the severity or impact 

that a vulnerability would have if it were successfully exploited. Assigning remediation efforts based on 

CVSS score has become a familiar and popular means of prioritizing patching, especially given how 

CVSS considers scores from 7-8.9 to be “high severity,” while scores above 9.0 are critical. For example, 

The U.S. Department of Homeland Security (DHS) issued a binding operational directive to federal 

agencies, requiring them to patch critical vulnerabilities within 15 days and high severity ones within 30 

days.  In addition, the Payment Card Industry Data Security Standard (PCI-DSS) requires that all 15

merchants remediate vulnerabilities with a CVSS score above 4.0 (PCI, 2018). 

The prediction results for a firm adopting a remediation strategy driven by CVSS score, including the 

machine learning model which accounts for interactions, are shown in Table 2. For brevity, we only show 

tabular results for 4 rules-based strategies, while we display full results in Figure 5. 

Table 2: CVSS prediction results 

14 Note the area under the curve metrics here are for the precision-recall curve not the receiver operating 
characteristic (ROC) curve. The AUC of the ROC curve for XGBoost is 0.91. 
15 See https://cyber.dhs.gov/bod/19-02/.  



Strategy Accuracy Efficiency Coverage 
Level of Effort 

 (# vulns) 

Efficiency 

by Chance 

Coverage 

by Chance 

CVSS 10+ 90.40% 16.80% 18.80% 4,686 5.53% 6.20% 

CVSS 9+ 84.70% 17.80% 48.70% 11,477 5.53% 15.20% 

CVSS 8+ 72.40% 12.10% 63.60% 21,990 5.53% 29.10% 

CVSS 7+ 57.00% 9.00% 74.30% 34,530 5.53% 45.70% 

CVSS 6+ 51.80% 8.30% 76.60% 38,674 5.53% 51.20% 

CVSS 5+ 34.10% 6.90% 87.10% 52,906 5.53% 70.00% 

CVSS 4+ 10.20% 5.70% 98.50% 71,908 5.53% 95.10% 

ML Model 85.3% 18.80% 50.20% 11,153 5.53% 14.80% 

Note: Efficiency by Chance and Coverage by Chance are the overall results from a strategy of randomly selecting vulnerabilities 

to remediate. 

The machine learning (ML) model for this strategy uses 20 features of CVSS for training, and is shown in 

Figure 5. The CVSS feature set includes each of the base metrics as defined in CVSS (version 2): attack 

vector, access complexity, authentication, and 3 impact metrics each for confidentiality, integrity, and 

availability.   16

16 Attack vector refers to the network proximity required by an attacker in order to exploit a vulnerability (e.g. 
differentiating whether an attacker can launch a single packet from across the internet, or whether she requires 
physical access to the vulnerable device). Authentication refers to the level of additional authentication privileges 
the attacker requires in order to exploit the vulnerability (e.g. must the attacker authenticate to the vulnerable system 
before attack, or can she execute the attack anonymously). Access complexity considers whether the attacker must 
rely on actions beyond her control (such as winning a computing race condition) in order to carry out the attack. The 
3 impact metrics measure the degree of loss by the system. Further information can be found at 
https://nvd.nist.gov/vuln-metrics/cvss/v2-calculator. 



 

Figure 5: CVSS prediction results 

 Note: Level of effort refers to the numbers of vulnerabilities to be patched by the given strategy. 

 

These results suggest that a rule-based strategy of remediating all vulnerabilities with CVSS 7 or higher 

would achieve coverage of slightly over 74% with an efficiency of 9%, and accuracy of only 57%. This 

appears to be the best balance among CVSS-based strategies, even though it would still result in 

unnecessarily patching 31k (76k total - 35k patched) unexploited vulnerabilities. Further, note that the 

PCI-DSS mandate requires that vulnerabilities scoring 4+ be patched, which is equivalent to an efficiency 

of random patching, provides only slightly better coverage, and at the cost of fixing 72k vulnerabilities. 

While some research shows that a strategy of patching by CVSS score is no better than random chance 

(Allodi and Massacci, 2014), our results show that a strategy of patching CVSS score 9+ performs 

significantly better than random chance.  

While the ML model performs better than a strategy of patching by any single score, the differences are 

not dramatic. Indeed, for most all CVSS strategies, the machine learning model performs only marginally 

better. 

Next, we examine a strategy of patching according to whether an exploit involving the vulnerability has 

been published publicly. 



Published Exploits 
It is a relatively recent capability that organizations are able to record information about vulnerabilities 

that have been exploited in the wild. Prior to that, and a resource that is still quite valuable, practitioners 

had relied on datasets either describing how to exploit a vulnerability, or providing working or 

proof-of-concept code to exploit known vulnerabilities. One may well consider that these “published” 

exploit repositories are reasonable proxies (predictors) for exploits found in the wild, and absent ground 

truth data (i.e. complete information about all exploits), firms might employ a remediation strategy based 

off of published exploits. Indeed, as described above, a number of research efforts have used published 

exploits as their outcome target variable. 

In Table 3, we provide prediction results for 3 exploit code repositories (Elliot, Exploit DB, and 

Metasploit), and our machine learning model.  

Table 3: Published Exploits prediction results 

Strategy Accuracy Efficiency Coverage 
Level of Effort 

(#vulns) 

Efficiency 

by Chance 

Coverage by 

Chance 

Elliot 94.35% 34.40% 2.30% 285 5.53% 0.40% 

Exploit DB 86.78% 17.90% 38.80% 9,055 5.53% 12.00% 

Metasploit 94.89% 63.20% 18.20% 1,208 5.53% 1.60% 

ML Model 95.36% 70.50% 27.90% 1,657 5.53% 2.20% 

 

We first observe that of the rules-based approaches, the Exploit DB strategy has the best coverage, but 

suffers from considerably poor efficiency, while Metasploit performs exceptionally well in efficiency 

(highest out of all the rules-based approaches), with considerable reduction in coverage, and drastically 

smaller level of effort required to satisfy the strategy. The Elliot DB strategy, while not efficient as the 

Metasploit strategy, incurs a relatively tiny level of effort of just 285 vulnerabilities that would need to be 

patched. These same results are also presented graphically in Figure 6. 



 

Figure 6:: Published Exploits prediction results 

Note: Level of effort refers to the numbers of vulnerabilities to be patched by the given strategy. 

Visually, it is even more clear how well the Metasploit strategy performs relative to the other rules-based 

models, suggesting that vulnerabilities (and exploits) that appear in this repository are very likely to be 

seen in the wild. On the other hand, exploits that appear in Exploit DB require a great deal more coverage, 

for little efficiency gain.  

There are important distinctions between these exploit repositories which may help explain these 

variations. Exploit DB is an online repository of scripts and source code for exploits. Execution of the 

exploits listed in exploit DB often require a minimal level of technical ability such as knowledge of how 

to edit and execute a scripting language or knowledge to compile source code to get a working exploit. 

The D2 Elliot Web Exploitation Framework (Elliot) and the Metasploit framework are both applications 

that can be installed and each contains a set of working exploit modules. Unlike Exploit DB, the technical 

ability required to exploit a target system is lower since the exploit code is easily executable through a 

user interface. Those differences undoubtedly affect their placement on the efficiency/coverage metrics. 

Given the data at hand, it’s difficult to parse out if the Metasploit community is talented at identifying 

vulnerabilities that will be exploited in the wild, or if vulnerabilities are exploited in the wild because the 



modules exist in an exploitation framework with a user interface. But it is clear that over 60% of the 

modules associated with CVEs are observed to be exploited in the wild.  

In addition, an interesting artifact emerges from the machine learning curve of Figure 6. The discontinuity 

is likely an artifact of a model built on a small number of binary variables. There are very few variations 

in the way the binary variables interact and the left side from the discontinuity is likely revealing a 

handful of vulnerabilities with unique mixtures of the variables. This would explain why the individual 

cross-validation folds fan out as precision increases (gray lines in Figure 6) - a small number of unique 

combinations may appear unevenly in either the training or testing data set, creating the variation. 

Nevertheless, notice how this ML model performs better than any of the individual strategies, achieving a 

better balance of coverage and efficiency.  

The final remediation strategy presented below considers patching according to select keywords found in 

the vulnerability description. 

Reference tagging 
Finally, we consider a remediation strategy consisting of commonly used keywords as provided in the 

CVE reference links. Keywords can provide a shorthand insight into the characteristics and potential 

impact from particular sets of vulnerabilities, beyond what is captured by CVSS. And so these become 

useful heuristics upon which to based a remediation strategy.  

Rather than show the full curated 83 unique reference tags in Table 4, we selected 4 tags, but all 83 tags 

are represented in Figure 7,  

Table 4: Reference tagging prediction results 

Strategy Accuracy Efficiency Coverage 
Level of Effort 

(#vulns) 

Efficiency 

by Chance 

Coverage 

by Chance 

memory corruption 88.50% 15.48% 24.00% 6,480 5.53% 8.60% 

code execution 70.80% 12.25% 69.50% 23,729 5.53% 31.40% 

remote 29.40% 6.77% 92.00% 56,841 5.53% 75.20% 

buffer overflow 87.40% 13.47% 23.50% 7,304 5.53% 9.70% 

ML Model 88.80% 23.5% 45.9% 14,841 5.53% 19.60% 

 



Perhaps unsurprisingly, all the rule-based approaches are relatively inefficient. Tags like “code execution” 

and “remote” (i.e. “remotely exploitable”) achieved relatively similar efficiency but at a much greater cost 

of coverage. For example, a firm would need to remediate 24k vulnerabilities under the code execution 

strategy, while only 7.3k vulnerabilities under the buffer overflow strategy -- for the same level of 

efficiency. The results are shown graphically in Figure 7. 

 

Figure 7: Reference tagging prediction results 

Note: Level of effort refers to the numbers of vulnerabilities to be patched by the given strategy. 

Overall, like the other rules-based strategies, focusing on individual features (whether CVSS, published 

exploit, or reference tags) as a decision point yields inefficient remediation strategies. This holds true for 

all of the individual multi-word expressions. And as with all other strategies, the machine learning model 

using the full set of multi-word expressions out-performs the simple strategies with a better balance 

between efficiency and coverage, and with less effort.  

The memory corruption and buffer overflow strategies likely enjoy higher (or approximately equal) 

efficiency for lower coverage possibly because it is these vulnerabilities that offer the most attractive 

targets for malicious actors. Interestingly, if it were true that buffer overflow vulnerabilities were also the 

most severe (in terms of impact and exploitability), then one might expect there to be a strong correlation 

between these two strategies and the CVSS 9 or 10 strategies. Indeed, as shown in Figure 7, there is some 

regional proximity of these strategies, suggesting that a rules-based approach based on any one of these 



approaches is approximately equivalent. Although a CVSS 10 strategy will perform better than a CVSS 9 

or either memory corruption and buffer overflow strategies. 

We provide more explanation and discussion of these strategies and our full model next. 

Full Machine Learning Strategy 
We’ve seen in the rule-based models that simple heuristics don’t perform well and while machine 

learning models based on individual classes of features outperform the rule-based approach, they can be 

improved with a machine learning approach using all data available. Therefore, we construct a machine 

learning model using the full data set outlined in Table 1, using 75,585 unique CVEs and 209 features 

from each vulnerability.  

Unsurprisingly, the coverage/efficiency curve for the full model outperforms the reduced-feature models 

and all of the simple heuristic models, as shown in Figure 8.  

 

Figure 8: Prediction performance of all models 

Observe how each of the three feature-based models bear approximately the same slope and position 

above about 50% coverage, with the CVSS model performing slightly less efficiently. Below 50% 



coverage, on the other hand, while the Reference Tags and CVSS models continue along similar treds, the 

Published Exploits model becomes extremely efficient, even approaching the Full Model.  

Comparing the coverage and efficiency output from each strategy has been useful, but does not provide a 

complete picture. The decision to remediate a vulnerability will be associated with a very specific level of 

effort by the firm (e.g. the effort in patching). Unfortunately there is no single metric by which to evaluate 

a solution and firms are not homogenous among capabilities, resources, and risk tolerance. And so one 

approach is to optimize along both coverage and efficiency (which is done by maximizing the F1 

measure). But what if the firm has few resources and needs to be more efficient? What if the firm wants to 

improve coverage at the expense of efficiency?  

We consider these what-if prospects by creating a “highly efficient” scenario (which doubles the weight 

placed on efficiency in the F-measure) and a “broad coverage” scenario (which doubles the weight of 

coverage in the F-measure). Any emphasis on one comes at a cost of the other, and the level of effort 

follows. Table 5 shows the metrics for each scenario. 

Table 5 : Full Model, with 3 scenarios 

Scenario Accuracy Efficiency Coverage Level of Effort (#vulns) 

Highly Efficient 94.5% 71.4% 37.3% 2,186 

Balanced 94.5% 54.6% 53.0% 4,058 

Broad Coverage 94.5% 36.8% 69.1% 7,851 

 

We now compare all heuristic strategies outlined in this document with the model output as shown in 

Figure 9. 



 

Figure 9: All models 2 

Note that almost all of the simple strategies appear in the lower fifth of the diagram (performing below 

20% efficiency), suggesting that any vulnerability risk management program relying on simple (single) 

characteristics (like vulnerability severity, or key phrases) will have acute efficiency problems from 

unnecessarily patching many vulnerabilities. The consistently low efficiency implies a slow and steady 

increase in the level of effort in order to reach broad coverage regardless of the simple decision point.  

The Full Model, on the other hand, strictly dominates all other strategies by a considerable amount.  

Discussion 
In this paper we sought to test and evaluate 3 practical vulnerability remediation strategies using: CVSS 

scores, published exploits, and attributes of the vulnerability (discovered through multi-word expression 

tagging). For each strategy, we presented the coverage and efficiency results from a simple rules-based 

approach, as well as a machine learning model. Finally, we integrated our rich dataset into a full machine 

learning model in order to construct an optimal model. 



We find that applying machine learning approaches to existing feature sets strictly dominate heuristic 

approaches (although sometimes only by a slight margin). This is because most heuristic approaches 

make decisions based on one or a limited amount of data points. Heuristic approaches cannot possibly 

factor in all the information or interaction effects of a more advanced machine learning model.  

While we constructed our tables with a discrete decision, recall that the output of each model is a 

probability that a particular vulnerability will (or will not) be exploited in the wild. In reality, of course, 

firms face prioritization decisions after each new vulnerability report and enterprise vulnerability scan. 

Therefore, in practice, we consider how firm preferences and risk tolerances many vary, which we reflect 

in our overall strategies of “highly efficient,” “balanced,” and “broad coverage.” We would expect firms 

with a lower capacity for remediating vulnerabilities to adopt a “highly efficient” strategy fixing some 

proportion of vulnerabilities based on the probability output from the model, and maximizing the benefit 

from their limited resources. As a firm gains experience and capacity, they can push towards a balanced 

approach. While it may require a greater level of effort after each scan, this maturity elevates a firm to a 

higher rate of coverage. Finally, the more mature organizations that have the capacity for a higher level of 

effort may achieve a higher rate of coverage much more quickly than the other two strategies.  

Regardless of the capacity and current strategy of an individual firm, a machine learning approach will 

reduce costs and maintain their existing level of coverage. For example, if a firm addresses vulnerabilities 

that have a proof-of-concept code published in Exploit DB, our model will achieve a comparable level of 

coverage, but at one-quarter the level of effort. If the firm is currently addressing vulnerabilities with a 

CVSS score of 7 and above, the “broad coverage” strategy will achieve comparable coverage, but also, 

with one-quarter of the effort.  

So far, our focus has been on the predictive power of a machine learning approach, but we recognize the 

importance of interpreting each contribution individually. An initial analysis shows the relative 

importance of: published exploit, followed by the prevalence of the vulnerability across the hundreds of 

vulnerability scans collected by the security service provider. Other important features include the tag 

“code execution” (such as a remote code execution flaw), followed by whether a Microsoft reference is 

listed in the published CVE, the CVSS Base score, and finally the number of references listed in the CVE 

description.  



Limitations 
We recognize that out results and inferences are limited to the data collected by our data partners, and 

therefore may not be representative of all firms. Specifically, the vulnerability scan data are limited to the 

commercial and open-source vulnerability scanners used, as well as the kinds of software operating in 

these networks, and therefore, may be susceptible to missed observations of exploit data. 

Throughout this Article, we refer to known exploits as “exploits in the wild,” but we recognize that this 

inference is limited to exploits that have been observed by signature-based intrusion detection/prevention 

(IDS/IPS) sensors and are limited in their scope. First, we do not know how many of the non-detected 

vulnerabilities did not have signatures generated, therefore we could never observe the exploit in the wild. 

Secondly, the IDS/IPS may not have had the most up to date signatures and therefore missed some known 

exploits. The visibility of these sensors is limited to the enterprise networks within which they were 

placed, and may therefore have missed exploits targeting other networks. 

Also, we do not consider zero day vulnerabilities in this research, or exploits against zero day 

vulnerabilities given that these vulnerabilities are, by definition, not observable by signature-based 

vulnerability scanners. 

We acknowledge that our data is a “point in time,” and our knowledge is limited to that point. It is 

feasible we are training our model to ignore vulnerabilities “not yet” exploited in the wild. But given the 

massive class imbalance and the massive collection of exploited vulnerabilities (5.5% of all 

vulnerabilities), the influence of mislabeled target data should be minimal.  

We attempted to make clear that our measure of risk relates to threat only (i.e. the likelihood that a 

vulnerability will be exploited), and does not consider all other factors that determine risk, such as the 

strength security controls employed by target organizations, or the value of the asset or data on that assets 

or the actual impact that a successful exploit may cause. In effect, we provide an estimate of the biggest 

exposures to a neighborhood, not to the individual houses in that neighborhood. Further, while there are 

many factors that determine the probability of exploit (such as the motivation and capability of the 

attacker, economic, diplomatic or political considerations), we are not able to separately identify these 

factors and therefore our outcome measure is simply whether an exploit was observed (or not). 

In addition to efficiency and coverage, we considered a third measure of evaluation called “level of 

effort” which represented the number of vulnerabilities that the organization would have to patch in order 

to satisfy that strategy. We realize that this level of effort is notional, and does reflect the actual number of 



vulnerabilities to be patched for every firm, but instead reflects the number of vulnerabilities that a 

hypothetical firm would have to patch, if it contained as a baseline the total number of vulnerabilities 

included in our dataset (76k). While this is a useful number to track in order to gauge the relative effort 

between strategies, it is not reflective of the total effort for a firm for a number of reasons. First, the cost 

of applying patches is likely not constant across firms and vulnerabilities. Certainly, firms will have 

varying capabilities of acquiring, testing, and deploying patches across their internal and external 

enterprise networks. And firms vary in their level of effort required to apply a given patch, in terms of 

testing and applying throughout their network. Some firms may have 10 instances of a given 

vulnerability, while another firm may have 10,000 instances. Moreover, vendors seldom release a patch 

for a single vulnerability, but often bundle many fixes up into a single “patch.” And so, our results may 

underestimate the economies of scale that are achieved when firms apply bundled patches. 

In regard to modeling techniques, given the sparseness of some variables and relatively small base rate of 

exploits (upon which model identification is achieved), proper prediction and estimation of all features 

may be limited. We therefore tried to address this by dropping those features which were excessively 

sparse, and remarking on this where appropriate. 

Conclusion 
The ability to effectively assess the risk of a vulnerability, to understand how prevalent it is, and to make 

inferences about the risk it poses to either a single firm, or to sectors of critical infrastructure, is an 

extraordinarily important matter. Indeed, it is one of the foundations of information security risk 

management, domestic protection of critical infrastructure, and even national security. And it is still 

unsolved. 

Evidence-based vulnerability risk assessment, such as the research conducted in this Article, has the 

power to drive better patching decisions by software vendors who are making their own economic and 

political decisions about where to prioritize resources for developing and issuing patches. The better 

information vendors have about the actual risk to their customers, the sooner they can protect us. 

Our results also provide an opportunity to improve the existing CVSS standard, and specifically the 

temporal metric group, in order to produce a better risk score. While the CVSS base score reflects severity 

only, the CVSS standard also specifies temporal metrics which reflect properties that change over time, 

such as the threat and exploitability of a vulnerability. As such, the exploit prediction results in this 

research could be used to augment the overall CVSS framework. 



Our results also are relevant to federal policy makers such as the DHS which is charged with protecting 

U.S. federal networks, and support protection of U.S. critical infrastructure. Our results provide an 

opportunity for DHS to integrate evidence-based learning into their threat reports (from CISA/US-CERT) 

in order to provide improved measures of risk (and impact) to their constituents. Better information about 

vulnerability exploits can also be leveraged by them to disseminate throughout their Automated 

Information Sharing (AIS) network in order to better protect subscribers. 

In addition, we believe this research can inform the White House National Security Council (NSC), as 

well as other country’s governing bodies during deliberations on the use or restriction of zero day 

vulnerabilities as part of a Vulnerability Equities Process (VEP) (Romanosky, 2019). Central to the 

discussions of “defensive equities” are questions about the prevalence of vulnerabilities in, and therefore 

risks to, the country’s citizens and businesses. 

Finally, we believe this research will help crystalize the value of information sharing between 

organizations. Too often information sharing practices and agencies have struggled to demonstrate real 

value and prove actual effectiveness to their users. Individual organizations, themselves, are stymied by 

legal, bureaucratic, and technical obstacles. Our results, therefore, provide justification for sharing very 

tangible and practical kinds of data (namely, evidence of exploits used in the wild), understanding how 

they can be analyzed, and, most importantly, understanding what the results mean and what to do about 

them. The results further help characterize the value of the hundreds of indicators of compromise (IoCs) 

that follow from incident reports, relative to outcome variables like exploit in the wild. 

In sum, despite the small but growing body of literature on exploit prediction, firms and government 

agencies have been unable to practically integrate evidence-based wisdom into their decision making 

processes. We sincerely hope that this, and other similar research, can better help provide practical 

insights into this critical problem of assessing risk.  
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Appendix 

Exploit in the Wild vs Published Exploit 

Table 6: Published exploits vs exploits in the wild, (2009-2018) 

 

 

 

 


